## which is equivalent to rejecting the null hypothesis:

The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.

Because the test statistic *Z* = −1.92 > −2.33, we do not reject the null hypothesis. There is insufficient evidence at the *α* = 0.01 level to conclude that the rate has been reduced.

## which is equivalent to rejecting the null hypothesis:

The p value is just one piece of information you can use when deciding if your is true or not. You can use other values given by your test to help you decide. For example, if you run an, you’ll get a p value, an f-critical value and a .

In the above image, the results from the show a large p value (.244531, or 24.4531%), so you would not reject the null. However, there’s also another way you can decide: compare your f-value with your f-critical value. If the f-critical value is smaller than the f-value, you should reject the null hypothesis. In this particular test, the p value *and* the f-critical values are both very large so you do not have enough evidence to reject the null.

## part 6 | P Value | Null Hypothesis

After you do a statistical test, you are either going to reject or accept the null hypothesis. Rejecting the null hypothesis means that you conclude that the null hypothesis is not true; in our chicken sex example, you would conclude that the true proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers, would be less than 50%.

## also able to reject the null hypothesis

When you reject a null hypothesis, there's a chance that you're making a mistake. The null hypothesis might really be true, and it may be that your experimental results deviate from the null hypothesis purely as a result of chance. In a sample of 48 chickens, it's possible to get 17 male chickens purely by chance; it's even possible (although extremely unlikely) to get 0 male and 48 female chickens purely by chance, even though the true proportion is 50% males. This is why we never say we "prove" something in science; there's always a chance, however miniscule, that our data are fooling us and deviate from the null hypothesis purely due to chance. When your data fool you into rejecting the null hypothesis even though it's true, it's called a "false positive," or a "Type I error." So another way of defining the *P* value is the probability of getting a false positive like the one you've observed, *if* the null hypothesis is true.

## the null hypothesis is not rejected.

Another way your data can fool you is when you don't reject the null hypothesis, even though it's not true. If the true proportion of female chicks is 51%, the null hypothesis of a 50% proportion is not true, but you're unlikely to get a significant difference from the null hypothesis unless you have a huge sample size. Failing to reject the null hypothesis, even though it's not true, is a "false negative" or "Type II error." This is why we never say that our data shows the null hypothesis to be true; all we can say is that we haven't rejected the null hypothesis.