Climate changes and photosynthesis

Hydrogen bonds equalise all O-H bonds, which have different strength in gases with individual molecules, and these bonds break with equal probability, and not as covalent and ionic bonds. In water covalent and ionic bonds are equal. Water anomalies cannot be explained by laws that are applicable to gases and crystals. New ways should be sought to model and explain the water anomalies, e.g. models of glass or polymers. A role of other substances is shown to be impacting the formation metastable structures, which exist for prolonged time under such impact. In organisms, that consist of 70% to 90% of water clusters (water polymers), such polymers exist in their respective structures. The “fragments” of water polymers adjust to them helping the organisms to grow. The moving water yields products of chemical reactions and builds structures analogous the matrices of foreign inclusions, impacting physical, chemical, biological and geological processes. Water, which has the leading role for lives on Earth, also helps sciences. The process of water dissociation into ions is now explained as resulting from the motion of water. The mechanism of water dissociation is explained. The origin of oxygen on Earth is also explained as a result of mechanochemical processes and not for photosynthesis, which has crucial significance.

In different parts of the Earth, air composition for ..

While oxygen level changes of the model show early fluctuations that the model does not, both models agree on a huge rise in oxygen levels in the late Devonian and Carboniferous, in tandem with collapsing carbon dioxide levels. There is also virtually universal agreement that that situation is due to rainforest development. Rainforests dominated the Carboniferous Period. If the Devonian could be considered terrestrial life’s , then the Carboniferous was its . In the Devonian, plants developed vascular systems, photosynthetic foliage, seeds, roots, and bark, and true forests first appeared. Those basics remain unchanged to this day, but in the Carboniferous there was great diversification within those body plans, and Carboniferous plants formed the foundation for the first complex land-based ecosystems. Ever since the episodes, there has , and the that have prominently shaped Earth’s eon of complex life probably always began with ice sheets at the South Pole, and the current ice age arguably is the only partial exception, but today’s cold period really began about 35 mya, .

Changes in the Carbon Cycle - NASA Earth Observatory

The biological and geological future of Earth can be extrapolated based ..

When sea levels rise as dramatically as they did in the Cretaceous, coral reefs will be buried under rising waters and the ideal position, for both photosynthesis and oxygenation, is lost, and reefs can die, like burying a tree’s roots. About 125 mya, reefs made by , which thrived on , began to displace reefs made by stony corals. They may have prevailed because they could tolerate hot and saline waters better than stony corals could. About 116 mya, an , probably caused by volcanism, which temporarily halted rudist domination. But rudists flourished until the late Cretaceous, when they went extinct, perhaps due to changing climate, although there is also evidence that the rudists . Carbon dioxide levels steadily fell from the early Cretaceous until today, temperatures fell during the Cretaceous, and hot-climate organisms gradually became extinct during the Cretaceous. Around 93 mya, , perhaps caused by underwater volcanism, which again seems to have largely been confined to marine biomes. It was much more devastating than the previous one, and rudists were hit hard, although it was a more regional event. That event seems to have , and a family of . On land, , some of which seem to have , also went extinct. There had been a decline in sauropod and ornithischian diversity before that 93 mya extinction, but it subsequently rebounded. In the oceans, biomes beyond 60 degrees latitude were barely impacted, while those closer to the equator were devastated, which suggests that oceanic cooling was related. shows rising oxygen and declining carbon dioxide in the late Cretaceous, which reflected a general cooling trend that began in the mid-Cretaceous. Among the numerous hypotheses posited, late Cretaceous climate changes have been invoked for slowly driving dinosaurs to extinction, in the “they went out with a whimper, not a bang” scenario. However, it seems that dinosaurs did go out with a bang. A big one. Ammonoids seem to have been brought to the brink with nearly marine mass extinctions during their tenure on Earth, and it was no different with that late-Cretaceous extinction. Ammonoids recovered once again, and their lived in the late Cretaceous, but the end-Cretaceous extinction marked their final appearance as they went the way of and other iconic animals.