PREVITAMIN D PHOTOSYNTHESIS IN VITRO

Above 700 nm, the photon energy is too low to activate the photosynthetic process via the chlorophylls and various cartenoids. However, the phytochrome photopigment, which is responsible for stem elongation, leaf expansion, shade avoidance, neighbor perception, seed germination, and flower induction, has two isoforms called Pr and Pfr. In its ground state Pr, phytochrome has a spectral absorbance peak of 660 nm. When it absorbs a red photon, it converts to its Pfr state, which has a spectral absorbance peak of 730 nm. When the phytochrome molecule absorbs a far-red photon, it converts back to its Pr state, and in doing so triggers a physiological change in the plant.

However, the way these leaves act can differ depending on plant species and in vitro conditions.

In Calathea the in vitro leaves function as storage organs, from which the accumulated reserves (glucose, fructose) are consumed during the first days after transfer, until new leaves appear; these in vitro leaves never become fully autotrophic.


PHOTOSYNTHESIS, DARK RESPIRATION AND ..

()NUMEROUS attempts to achieve a photo-sensitized reduction of carbondioxide by water in vitro are on record1.

McCree (1972a) noted that the relative quantum yield for crop plant photosynthesis has two peaks at 440 nm and 620 nm. He also noted however, the , which states that photosynthesis in the presence of two or more wavelengths can be more efficient than the sum of that due to the individual wavelengths. In particular, adding white or red light (less than 680 nm) to deep red light (greater than 680 nm) can beneficially increase the rate of photosynthesis.


MODELS FOR IN-VITRO PHOTOSYNTHESIS (World …

Typical absorptance spectra for chlorophyll A, chlorophyll B, beta-carotene, and two isoforms of phytochrome are shown in Figure 1. It must be noted, however, that these spectra are approximate. They are measured in vitro by dissolving the pigments as extracts in a solvent, which affects their absorptance spectra. By themselves, they suggest that blue and red LEDs alone are sufficient for horticultural applications. In reality, however, the situation is much more complicated.

Montse were cultured in vitro ..

In addition to using chlorophylls and carotenoids for photosynthesis, plants use these and other photopigments for a wide variety of functions. The phytochromes Pr and Pfr, for example, respond to 660 nm red and 735 nm infrared radiation respectively, and in doing so induce seed germination and flowering, regulate leaf expansion and stem elongation, and trigger photoperiod and shade avoidance responses (see Appendix A).

Olga Dmitrenko 1 and Wolfgang Reischl 2

Photosynthetically active radiation (PAR) is defined as electromagnetic radiation over the spectral range of 400 nm to 700 nm that photosynthetic organisms are able to use in the process of photosynthesis to the carbon in CO­2 into carbohydrates. Horticulturalists measure PAR for both plant research and greenhouse lighting design (e.g., Barnes et al. 1993) using specialized photometers (e.g., Biggs et al. 1971).

Scientia Horticulturae, 49 ( 1992 ) 9-

Photosynthesis is the process used by plants to convert electromagnetic radiation – light – into chemical energy that is used for growth and development. All that is needed for this process is carbon dioxide (CO2), nutrients, and water. The process itself is not particularly efficient; only 4 to 6 percent of the absorbed radiation is converted into chemical energy (Zhu et al. 2010, Table 2). Still, it is the engine that drives most life on this planet.