Protein Synthesis -Translation and Regulation

Furthermore, IL-6 mRNA accumulation stimulated by cycloheximide or anisomycin is almost completely inhibited in the presence of actinomycin D, indicating that this effect occurs mainly through the activation of the transcriptional machinery.

T1 - Effect of cycloheximide on parameters regulating protein synthesis

The effects of protein synthesis inhibitors and the lysosomotropic agent chloroquine on the metabolism of the insulin receptor were examined. Through the use of the heavy-isotope density shift technique, cycloheximide was found to inhibit both the synthesis of new insulin receptor and the inactivation of old cellular insulin receptor. Upon investigation of the locus of this effect of protein synthesis inhibition, it was found that cycloheximide did not inhibit 1) the translocation of receptor from the cell surface to an intracellular site, 2) the recycling of receptor from the internal site back to the plasma membrane, nor 3) the degradation of insulin. Cycloheximide did, however, rapidly and completely inhibit the inactivation of the insulin receptor. In the presence of extracellular insulin, this effect of cycloheximide resulted in the long-term (6h) accumulation of receptor in a trypsin-resistant intracellular compartment. Puromycin and pactamycin, protein synthesis inhibitors with mechanisms of action which differ from cycloheximide, produced the same effects on insulin receptor metabolism as cycloheximide, indicating that this effect on receptor metabolism is due to the inhibition of protein synthesis and not a secondary effect of cycloheximide. Actinomycin D also inhibited the inactivation of receptor. Chloroquine inhibited the receptor-mediated degradation of insulin, but had no effect on either the internalization or inactivation of the insulin receptor. The insulin-induced recycling of the internalized receptor was inhibited by chloroquine, possibly through the inhibition of the discharge of insulin from the insulin-receptor complex. From these observations, we suggest that 1) a protein factor is required to inactivate the insulin receptor, 2) this protein and the messenger RNA coding for the protein have short cellular half-lives, and 3) insulin degradation and insulin receptor inactivation are distinct, separable processes which not only occur at different rates, but possibly occur in distinct subcellular locations.


Effect of Cycloheximide on the Synthesis and …

T1 - Effect of cycloheximide on epidermal growth factor receptor trafficking and signaling

These data indicate that transcriptional induction of the IL-6 gene by inhibitors of protein synthesis is triggered by the same nuclear signals as other inducers.">


Regulation of protein synthesis in mammalian cells

The effect of cycloheximide upon protein synthesis, RNA metabolism, and polyribosome stability was investigated in the parent and in two temperature-sensitive mutant yeast strains defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Cycloheximide at high concentrations (100 μg/ml) severely inhibits but does not completely stop protein synthesis (Fig. 1); the incorporation of 14C-amino acids into polyribosome-associated nascent polypeptide chains continues at a slow but measurable rate (Figs. 2 and 3). Polyribosome structures are stable in the parent strain at 36° whether or not cycloheximide is present (Fig. 5). However, in Mutant ts- 136, a mutant defective in messenger as well as in stable RNA production, polyribosomes decay at the restrictive temperature (36° C) at the same rate whether or not cycloheximide is present (Fig. 5). Thus the maintenance of polyribosome structures is dependent upon the continued synthesis of messenger RNA even under conditions of extremely slow polypeptide chain elongation. In mutant ts- 187, a mutant defective in the initiation of polypeptide chains, all of the polyribosomes decay to monoribosomes within 2 minutes after a shift to the restrictive temperature; cycloheximide completely prevents this decay demonstrating that this mutant is capable of continued messenger RNA synthesis at 36° C. Consistent with these observations is the fact that a newly synthesized heterogeneously sedimenting RNA fraction continues to enter polyribosomes in the presence of cycloheximide whereas the entrance of newly synthesized ribosomal RNA is severely inhibited (Figs. 7, 8, 9). The decay or lack of decay of polyribosomes at the restrictive temperature is, therefore, a rapid and discriminating test for the analysis of mutants defective in macromolecule synthesis. Mutants which exhibit a decay of polyribosomes in the presence of cycloheximide are likely to be defective directly or indirectly in the synthesis of messenger RNA whereas mutants in which decay is prevented or slowed by cycloheximide are likely to be defective in some factor required for the association of ribosomes and messenger RNA.

The rate of protein synthesis ..

T1 - The effect of cycloheximide upon polyribosome stability in two yeast mutants defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis