IB Biology Notes - 8.2 Photosynthesis

As we can see, there is a close relationship between the action spectrum and absorption spectrum of photosynthesis. There are many different types of photosynthetic pigments which will absorb light best at different wavelengths. However the most abundant photosynthetic pigment in plants is chlorophyll and therefore the rate of photosynthesis will be the greatest at wavelengths of light best absorbed by chlorophyll (400nm-525nm corresponding to violet-blue light). Very little light is absorbed by chlorophyll at wavelengths of light between 525nm and 625 (green-yellow light) so the rate of photosynthesis will be the least within this range. However, there are other pigments that are able to absorb green-yellow light such as carotene. Even though these are present in small amounts they allow a low rate of photosynthesis to occur at wavelengths of light that chlorophyll cannot absorb.

What are the Products of Photosynthesis? - BiologyWise

More than being helpful, it is a necessity for humans and other animal species which can't produce their own food, but instead rely on the products of this process to meet their energy requirements and for the process of respiration.

IB Biology notes on 8.2 Photosynthesis

Similarly, oxygen - which is released as a bi-product of this process, is the most useful for humans and other living beings.

An ecosystem consists of the whole community of living organisms (biocenosis), the abioticcomponent of a certain environment (biotope) and their relationships.
The relationships essentially consist in a flux of substances which pass from thenon-living components to living ones and in a flux of energy which passes from thephotosynthetic organisms (plants) to the herbivorous animals, then to carnivores. Thewastes and the dead organisms are then decomposed by the micro-organisms which brake downthe substances back to simple components, in a full cycle.
1 - With a shovel in a field or in a wood, dig a square hole of about half a meter (1 1/2feet) square and about 40 cm (18") deep. Describe the non-living components of thesoil and all forms of life you find: roots, earthworms, snails, centipedes, spiders,crickets, etc. To complete the description of the ecosystem of the soil, look forinformation on the role of each of these organisms and the relationships with the otherforms of life of this environment.
2 - In similar way you have studied the soil ecosystem, you can analyze other ecosystemssuch as the ones in a forest, pond, shore, or desert.
G. and L. Durrell (2) can be useful, or there are many other books on this matter.
An Illustration of a Soil Ecosystem
Protocols for a Soil Ecosystem Approach for Characterizing Soil Biodiversity
Internet keywords: soil ecosystem.

Photosynthesis: Crash Course Biology #8 - YouTube

Plants absorb water through their roots, and carbon dioxide through their leaves. Some glucose is used for respiration, while some is converted into insoluble for storage. The stored starch can later be turned back into glucose and used in respiration. Oxygen is released as a by-product of photosynthesis.

This tutorial introduces photosynthesis

In addition to producing NADPH, the light dependent reactions also produce oxygen as a waste product. When the special chlorophyll molecule at the reaction centre passes on the electrons to the chain of electron carriers, it becomes positively charged. With the aid of an enzyme at the reaction centre, water molecules within the thylakoid space are split. Oxygen and H+ ions are formed as a result and the electrons from the splitting of these water molecules are given to chlorophyll. The oxygen is then excreted as a waste product. This splitting of water molecules is called photolysis as it only occurs in the presence of light.

Photosynthesis All Materials © Cmassengale I

Environmental scientists recognize that the fundamental source of energy for most life on earth is the sun. Through photosynthesis, plants capture the light and convert it into chemical potential energy. Plants then store the potential energy in the form of (biological matter that fuels nearly every animal on earth).